DATA SHEET

For a complete data sheet，please also download：
－The IC04 LOCMOS HE4000B Logic Family Specifications HEF，HEC
－The IC04 LOCMOS HE4000B Logic Package Outlines／Information HEF，HEC

勝特力科技 886－3－5753170百年電子 86－755－83289224 Http：／／www．100y．com．tw

HEF4532B

MSI
8－input priority encoder
Product specification
File under Integrated Circuits，IC04

DESCRIPTION

The HEF4532B is an 8 －input priority encoder with eight active HIGH priority inputs（ I_{0} to I_{7} ），three active HIGH outputs（ O_{0} to O_{2} ），an active HIGH enable input（ E_{in} ），an active HIGH enable output（ $\mathrm{E}_{\text {out }}$ ）and an active HIGH group select output（GS）．
Data is accepted on inputs I_{0} to I_{7} ．The binary code
corresponding to the highest priority input（ I_{0} to I_{7} ）which is HIGH，is generated on O_{0} to O_{2} if $\mathrm{E}_{\text {in }}$ is HIGH ．Input I_{7} is assigned the highest priority．
GS is HIGH when one or more priority inputs and $\mathrm{E}_{\text {in }}$ are HIGH． $\mathrm{E}_{\text {out }}$ is HIGH when I_{0} to I_{7} are LOW and $\mathrm{E}_{\text {in }}$ is HIGH． $\mathrm{E}_{\text {in }}$ ，when LOW，forces all outputs $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{2}, G S, \mathrm{E}_{\text {out }}\right)$ LOW．

Fig． 1 Functional diagram．

Fig． 2 Pinning diagram．

HEF4532BP（N）：16－lead DIL；plastic （SOT38－1）
HEF4532BD（F）：16－lead DIL；ceramic（cerdip） （SOT74）
HEF4532BT（D）：16－lead SO；plastic （SOT109－1）
（ ）：Package Designator North America

PINNING

I_{0} to I_{7}	priority inputs
$\mathrm{E}_{\text {in }}$	enable input
$\mathrm{E}_{\text {out }}$	enable output
GS	group select output
O_{0} to O_{2}	outputs

FAMILY DATA，IDD LIMITS category MSI
See Family Specifications

勝特力科技 886－3－5753170
百年電子 86－755－83289224
Http：／／www．100y．com．tw
G661 Kıenuer

Fig． 3 Logic diagram．

TRUTH TABLE

INPUTS									OUTPUTS				
$\mathrm{E}_{\text {in }}$	I_{7}	I_{6}	I_{5}	I_{4}	I_{3}	I_{2}	I_{1}	I_{0}	GS	O_{2}	O_{1}	O_{0}	$E_{\text {out }}$
L	X	X	X	X	X	X	X	X	L	L	L	L	L
H	L	L	L	L	L	L	L	L	L	L	L	L	H
H	H	X	X	X	X	X	X	X	H	H	H	H	L
H	L	H	x	X	X	x	x	x	H	H	H	L	L
H	L	L	H	X	X	X	X	X	H	H	L	H	L
H	L	L	L	H	x	x	x	x	H	H	L	L	L
H	L	L	L	L	H	X	X	X	H	L	H	H	L
H	L	L	L	L	L	H	x	x	H	L	H	L	L
H	L	L	L	L	L	L	H	x	H	L	L	H	L
H	L	L	L	L	L	L	L	H	H	L	L	L	L

Notes

1． $\mathrm{H}=\mathrm{HIGH}$ state（the more positive voltage）
2． $\mathrm{L}=\mathrm{LOW}$ state（the less positive voltage）
3．$X=$ state is immaterial

LOGIC EQUATIONS

$\mathrm{O}_{2}=\mathrm{E}_{\text {in }} \cdot\left(\mathrm{I}_{4}+\mathrm{I}_{5}+\mathrm{I}_{6}+\mathrm{I}_{7}\right)$
$\mathrm{O}_{1}=\mathrm{E}_{\text {in }} \cdot\left(\mathrm{I}_{2} \cdot \bar{I}_{4} \cdot \bar{I}_{5}+\mathrm{I}_{3} \cdot \bar{I}_{4} \cdot \bar{I}_{5}+\mathrm{I}_{6}+\mathrm{I}_{7}\right)$
$\mathrm{O}_{0}=\mathrm{E}_{\text {in }} \cdot\left(\mathrm{I}_{1} \cdot \bar{I}_{2} \cdot \bar{I}_{4} \cdot \bar{I}_{6}+\mathrm{I}_{3} \cdot \bar{I}_{4} \cdot \bar{I}_{6}+\mathrm{I}_{5} \cdot \bar{I}_{6}+\mathrm{I}_{7}\right)$
$\mathrm{E}_{\text {out }}=\mathrm{E}_{\text {in }} \cdot \bar{I}_{0} \cdot \bar{I}_{1} \cdot \bar{I}_{2} \cdot \bar{I}_{3} \cdot \bar{I}_{4} \cdot \bar{I}_{5} \cdot \bar{I}_{6} \cdot \bar{I}_{7}$
$\mathrm{GS}=\mathrm{E}_{\text {in }} \cdot\left(\mathrm{I}_{0}+\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}+\mathrm{I}_{4}+\mathrm{I}_{5}+\mathrm{I}_{6}+\mathrm{I}_{7}\right)$

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ ；input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	TYPICAL FORMULA FOR P（ $\mu \mathrm{W}$ ）	
Dynamic power dissipation per package（P）	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 1620 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D}{ }^{2} \\ 6600 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \\ 15970 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq．(MHz) $\mathrm{f}_{\mathrm{o}}=$ output freq．(MHz) $\mathrm{C}_{\mathrm{L}}=$ load capacitance（ pF ） $\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage（ V ）

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ ；input transition times $\leq 20 \mathrm{~ns}$ ；see also waveforms Fig． 4

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN．TYP．	MAX．		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{E}_{\text {in }} \rightarrow \mathrm{E}_{\text {out }}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	95 45 35	190 90 70	ns ns ns	$\begin{aligned} & 68 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 34 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & 80 \\ & 35 \\ & 30 \end{aligned}$	160 70 60	ns ns ns	$\begin{aligned} & \hline 53 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 24 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{E}_{\text {in }} \rightarrow \mathrm{GS}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 85 \\ & 45 \\ & 35 \end{aligned}$	$\begin{array}{r} 170 \\ 90 \\ 70 \end{array}$	ns ns ns	$\begin{aligned} & 58 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 34 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH $\mathrm{E}_{\text {in }} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	160 80 60	ns ns ns	$\begin{aligned} & 53 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	$\begin{array}{r} \hline 160 \\ 80 \\ 60 \end{array}$	ns ns ns	$\begin{aligned} & \hline 53 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
LOW to HIGH $\mathrm{I}_{\mathrm{n}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & 85 \\ & 40 \\ & 30 \end{aligned}$	$\begin{array}{r} 170 \\ 80 \\ 60 \end{array}$	ns ns ns	$\begin{aligned} & 58 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 115 \\ 50 \\ 35 \\ \hline \end{array}$	$\begin{array}{r} 230 \\ 100 \\ 70 \end{array}$	ns ns ns	$\begin{aligned} & 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
LOW to HIGH$\begin{aligned} & \mathrm{I}_{\mathrm{n}} \rightarrow \mathrm{GS} \\ & \quad \text { HIGH to LOW } \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	$\begin{array}{r} \hline 115 \\ 50 \\ 35 \\ \hline \end{array}$	$\begin{array}{r} \hline 230 \\ 100 \\ 70 \end{array}$	ns ns ns	$\begin{aligned} & \hline 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tPHL	$\begin{array}{r} 115 \\ 50 \\ 40 \end{array}$	$\begin{array}{r} 230 \\ 100 \\ 80 \end{array}$	ns ns ns	$\begin{aligned} & 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} 115 \\ 50 \\ 40 \\ \hline \end{array}$	$\begin{array}{r} 230 \\ 100 \\ 80 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} & \hline 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
Output transition times HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} \hline 120 \\ 60 \\ 40 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} \hline 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

Fig． 4 Waveforms showing propagation delays from inputs to outputs．

APPLICATION INFORMATION

Some examples of applications for the HEF4532B are：
－Priority encoder
－Keyboard encoder

Fig． 5 16－level priority encoder．

Fig． 6 0－to－9 keyboard encoder．

TRUTH TABLE（for Fig．6）

INPUTS										OUTPUTS				
9	8	7	6	5	4	3	2	1	0	GS	O_{3}	O^{\prime}	O＇1	O＇0
H	X	X	X	X	X	X	X	X	X	L	H	L	L	H
L	H	X	X	X	X	X	X	X	X	L	H	L	L	L
L	L	H	X	X	X	X	X	X	X	H	L	H	H	H
L	L	L	H	X	X	X	X	X	X	H	L	H	H	L
L	L	L	L	H	X	X	X	X	X	H	L	H	L	H
L	L	L	L	L	H	X	X	X	X	H	L	H	L	L
L	L	L	L	L	L	H	X	X	X	H	L	L	H	H
L	L	L	L	L	L	L	H	X	X	H	L	L	H	L
L	L	L	L	L	L	L	L	H	X	H	L	L	L	H
L	L	L	L	L	L	L	L	L	H	H	L	L	L	L

Notes

1． $\mathrm{H}=\mathrm{HIGH}$ state（the more positive voltage）
2．$L=L O W$ state（the less positive voltage）
3． $\mathrm{X}=$ state is immaterial

